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Mode I and Mode II Analyses of a Crack Normal to the Graded
Interlayer in Bonded Materials

Hyung Jip Choi*
School of Mechanical and A utomotive Engineering, Kookmin University, Seoul 136-702, Korea

In this paper, the plane elasticity equations are used to investigate the in-plane normal (mode
1) and shear (mode II) behavior of a crack perpendicular to and terminating at the interface in
bonded media with a graded interfacial zone. The interfacial zone is treated as a
nonhomogeneous interlayer with the continuously varying elastic modulus between the two
dissimilar, homogeneous semi-infinite constituents. For each of the individual loading modes,
based on the Fourier integral transform technique. a singular integral equation with a Cauchy
kernel is derived in a separate but parallel manner. In the numerical results. the values of
corresponding modes of stress intensity factors are illustrated for various combinations of
material and geometric parameters of the bonded media in conjunction with the effect of the
material nonhomogeneity within the graded interfacial zone.
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1. Introduction

One of the important problems to be carefully
noted with using the conventional bonded
materials is the. inevitable existence 'Of the sharp
interface between the dissimilar constituents
where the apparent property mismatch prevails.
As a result, the interface has usually been viewed
as a vulnerable area subjected to generally high
thermal and residual stresses and relatively weak
bonding strength with the higher likelihood of
failure. From the standpoint of analytical fracture
mechanics, the ideal interface modeling employed
in solving crack problems for such piecewise
homogeneous media also suffers from the
anomalous crack-tip behavior of complex power
or nonsquare-root singularities. depending on the
crack locations. Related studies belonging to this
category of crack problems, for instance. can be
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attributed to Rice (1988) and Romeo and
Ballarini (1995) for the cases of a crack lying
along and terminating perpendicularly at the
interface, respectively. and further typical
references quoted therein.
.' The recent development of the concept of
functionally graded materials featuring the spatial
variations of the properties, however. paved the
way to alleviate the aforementioned physical
shortcomings arising from the stepwise change in
the material parameters of bonded or layered
media (Lee and Erdogan, 1994; Suresh and
Mortensen. 1997). Such a new class of materials.
for example. would viably be utilized as
interfacial zones to bond basically incompatible
dissimilar materials, as thermal barrier coatings
to replace homogeneous coatings, and as wear
resistant layers in various components such as
bearings, gears. cams and other machine tools.
(Koizumi, 1993). Moreover, with the fracture
mechanics-based applications of the graded
materials in mind, a series of analytical solutions
to some crack problems has been obtained on a
nonhomogeneous continuum basis which is well
reviewed by Erdogan (1995). Specifically,
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Consider the two dissimilar, homogeneous

media bonded through a graded interfacial zone.

As shown in Fig. 1, the medium on the right

-hand side contains a crack of length 2c= b- a
and location d perpendicular to the interfacial

zone and let (x, y) = (Xk, y), k= 1, 2, 3, be the

local coordinates with their origins at the

locations of nominal interfaces. It is assumed that

the dimensions of the homogeneous constituents

Fig. 1 Configuration, coordinate systems, and load­
ing conditions for cracked dissimilar media
bonded through a graded interfacial zone

2. Problem Statement
and Formulation

investigated a similar problem of a mode I crack

where the graded material was assumed to be semi­

infinite. In consideration of the primary use of the

graded materials, however, a more interesting and

realistic model that would find more applications

in practice is to incorporate the presence of such

graded materials in the form of an interlayer

between the adjoining dissimilar constituents, as

was examined for a relatively simple case of a

mode III crack by Erdogan et al. (1991b). The

formulation of the crack problem, based on the

Fourier integral transform technique, is reduced
to solving a Cauchy-type singular integral equa­

tion for each of the individual loading modes. For

applying the fracture mechanics criteria, the main

results presented are the mode I and mode II

stress intensity factors evaluated from the near-tip

stress fields with the square-root singularity,

which are then illustrated as functions of material

and geometric parameters of the bonded media

with the graded interfacial zone.

assuming the material nonhomogeneity expressed

as the exponential variation of the elastic

modulus, Delale and Erdogan (1988) proposed

the square-root character of the crack-tip field

when the crack lies along the interface with the

nonhomogeneous half-plane. For a crack

perpendicular to and intersecting the interface

with the nonhomogeneous material, Erdogan et

al. (1991a, b) showed that the square-root singu­

lar behavior also prevails under mode I and mode

III loading conditions, respectively. Schovanec

and Walton (1988), Martin (1992),- and Jin and
Noda (1994) verified that the above conjecture is

true for the general material nonhomogeneity,
provided the variation of elastic properties in the

spatial domain is continuous and piecewise

differentiable near and at the crack tip. In parti­

cular, Jin and Noda (1994) showed that the

corresponding near-tip field quantities possess

the same angular distributions around the crack

tip as those for homogeneous materials. The

influence of material gradients in the vicinity of

the crack tip thus manifests itself only through the
crack driving forces such as the stress intensity

factors. Additional recent contributions pertinent

to the crack problems entailing graded properties

are, among others, due to Jin and Batra (1996),

Chen and Erdogan (1996), Bao and Cai (1997),

and Shbeeb and Binienda (1999) who considered

the delamination or interface cracking between
the graded coating and the substrate, whereas the

problems of a mixed mode crack and an array of

parallel cracks in a functionally graded plane

were resolved by Konda and Erdogan (1994) and

Choi (1997), respectively. Besides, the finite ele­

ment studies of fracture of functionally graded
materials were conducted by Gu et al. (1999) and

Anlas et al. (2000).
The objective of this paper is to provide the

plane elasticity solutions for both the mode I and

mode II problems of a crack perpendicular to the

graded interfacial zone in bonded dissimilar,

homogeneous half-planes. The interfacial zone is

treated as a nonhomogeneous interlayer with the

continuous variation of its elastic modulus in the

thickness direction. To be pointed out is that as

discussed in the foregoing, Erdogan et al. (1991a)
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are considerably greater than that of the

interfacial zone and the crack length. Hence, such

constituents are modeled to be semi-infinite. By

denoting the elastic moduli of the homogeneous

media as Es, k=l, 3, and treating the interfacial

zone as a nonhomogeneous interlayer of finite

thickness h, the elastic modulus of the interlayer

Ez(x) is assumed to follow an exponential varia­

tion as (Erdogan, 1995)

Ez(x) =E3e/l
x

, (3= kIn( ~:) (I)

where in the local coordinate (x, y) = (xz, y), the

nonhomogeneity parameter (3 as specified above

allows the continuous transition of the elastic
moduli from one half-plane to the other. Whereas

the Poisson's ratio is simply taken to be v/c=v=
constant, k= 1,2,3, which is justifiable to the

extent that the influence of v on the stress inten­

sity factors is rather insignificant (Konda and
Erdogan 1994; Choi, 1997).

With u/c(x,y) and V/c(X,y) , k=I,2,3, referring

to the x- and y-components of displacements,

respectively, the constitutive relations are given as

(J =~[(I +x) oU/c + (3-x) oV/c J (2)
U% x-lox oy

(J =~[(I+x) oV/c + (3-x) au/c] (3)
Ir,yy x-I oy ax

( oU/c iJv/c ) . k-l 2 3 ( )(J1txy= PIc iJy +---ax ' -, , 4

where (J/c/m (x, y), k= 1, 2, 3, l,m=x, y, are the

stress components, p/c=E/c/2(I+v), k=l, 2, 3,

are the shear moduli, and x=3-4v for plane

strain state and x= (3-v) / (I +1I) for plane

stress state. In the absence of body forces, a system

of governing equations corresponding to Eq. (1)
can be written as

M2 2 (i)Zu/c i)ZV/c)
v u/c+ x-I axr+ oxoy

+x!T[ (I -l-z) iJo~/c + (3-x) ~~ J=o (5)

M2 2 (i)ZU/c i)Zv/c )
v v/c+ x-I oxiJy +ayr

+(3( °o~/c + ~~/c )=0; k=l, 2, 3 (6)

in which (3,*0 for k=2 and (3=0 for k= I, 3.

By the geometric and material symmetry with

respect to the cracked plane, it suffices to consider

only the upper half region of the problem, y20,
subjected to the homogeneous interface and

boundary conditions imposed as

UI (0, y) =uz(h, y), VI (0, y) = vz(h, y)
uz(O, y) =U3(0, y), vz(O, y) =V3(O, y) (7)

(JIXX (0, y) = (Jzxx t.h, y),
(JI.>;JI (0, y) = (JZ.>;JI ih, y)
/1zxx(O, y) =03xx(O, y), l1zxy(O, y) = (T3.u(O, y) (8)

UI (Xl, y) -> 0, VI (Xl, y) -> 0; XI -> 00 (9)

U3(X3, y) -> 0, V3(X3, y) -> 0; X3 -> -00 (10)

In addition, the symmetry and antisymmetry

nature of the uncoupled mode I and mode n
problems, respectively, stipulates that the separate

sets of mixed conditions should be met along y =

o for each of the loading modes:

For mode I behavior;

(JI.>;JI (Xl, 0) =0; Xl ~ 0 (II)
(J1txy(X/c, 0) =0, v/c(x/c, 0) =0; k=2, 3,
O~xz~h, X3~0 (12)

VI (XI, 0)=0; O~xI~a, xI~b (13)
(JIYY(XI, +0) =P(XI) ; a~xI$.b (14)

For mode I behavior;

(JIYY(XI, 0) =0; XI~O (15)

!71r,yy(x/c, 0) =0, u/c(x/c, 0) =0; k=2, 3,
O~xz~h, X3~0 (16)

UI(XI, 0)=0; O~xI~a, xI2b (17)
(JI.>;JI(Xl, +0) =q(xI) ; a~xl$.b (18)

where P(XI) and q (Xl) describe the arbitrary
normal and shear crack surface tractions, respec­
tively.

Based on the cosine/sine Fourier transform
technique to solve Eqs. (5) and (6), the general

expressions of displacement components for the

cracked half-plane with (3=0 and (x, y) = (Xl,

y), satisfying the regularity condition in Eq. (9),
can be obtained as

UI=~ (OO[Al+Az(x+~)Je-sx{ c~ SY}ds
Jr)0 s -sm sy .

+_1_ (00 (Az+Ay) e-ISIY-iSXds (19)
2Jr )-00

Vl=~ (00(AI +Azx) e-sx{Sin SY}ds
Jr)o cos sy

__i 1~~[~+A(y+h)]e-iSIY-iSXds
2;r -~ Is I I S I
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from which it can be shown that

where S is the transform variable, Aj(s), j=l, ..,

4, are the arbitrary unknowns, and the upper/

lower ones in the braces are for the mode 1/[
behavior, respectively.

For the graded interlayer with {3=1=O and (x,

y) = (X2, y), the general solutions of displacement

components are also obtained as

(34)

(33)

(30)

(29)

and for the mode n behavior, similarly from Eqs.
(15), (19), (30), and (31), the expressions for

Aj, j=3, 4, are written in terms of rP2 such that

3. Singular Integral Equations

The remaining unknowns Aj, j=l, 2, Bj, j=I,..,

4, and Ci, j = I, 2, can also be determined in terms

of rPl for mode I response and q;2 for mode H
response, by applying the interface conditions in
Eqs, (7) and (8). The auxiliary functions rPj, j=

I, 2, thus become the only unknowns to be deter­

mined from the crack surface conditions in Eqs.
(14) and (18), respectively, subjected to the

compatibility condition in Eq. (32).

The general expressions for the traction

under the following conditions for the single

-valuedness of displacements outside the crack

region:

rPk (Xl) =0 ; OS-XIS-a, Xl~ b, k= I, 2 (31)

lab rPk(Xl)dxl=O; k=l, 2 (32)

In solving the current crack problem, the

unknown auxiliary functions can be defined to
replace the mixed conditions in Eqs. (13) and

(14) for the mode I crack and those in Eqs. (17)

and (18) for the mode n crack as

As a result, for the mode I behavior, by using

Eq. (II) and substituting from Eq. (20) into Eqs.
(29) and (3 I), the unknowns Aj, j=3, 4, can be

expressed in terms of rPl as

I-x
&(s) =2TST~(S)

I I-x l b
A. () istdIs I 1+x a '1'1 t e t

material features of the problem, it is noted that

the mode I loading does not affect the mode [
behavior, and vice versa.

(26)

(23)

(21)

(20)

(x-I) (n;+ !3nj) - (x+ I) S2

[2nj + (x - I) ph

;X~O

For the half-plane without a crack and {3=0

and (x,Y) = (X3,Y) , the general solutions of dis­
placement components that satisfy the regularity

condition in Eq. (10) can be expressed as

U3=- ~1~[Cl+C2(x- ~)JesxC:: :~}ds (27)

V3= ][2100

(C+CzX)esx{Sin SY} ds ; xs-o (28)
o cos sy

where Cj (s), j = 1, 2, are the arbitrary unknowns.
F or each loading mode, there exist a total of ten

arbitrary unknowns, Aj, Bj , j = 1,..,4, and Ci, j =
I, 2, in the general solutions of the elasticity

equations. It is observed that the conditions in

Eq. (12) and those in Eq. (16) for the mode I
and mode [ loadings, respectively, are satisfied

by the general solutions as given in Eqs. (21),
(22), (27), and (28). From the geometric and

nj=-i-[/3+ / /32+4s2+(-I)j4/3si( ~~~ rJ
; Re(nj) <0, j= I, 2 (24)

I[ I . .(3-X)1I2Jnj=-Z /3-V{32+4s2-(-:-I)'4/3S( t+x

; Re(nj) >0, j=3, 4 (25)

and mj(s) , j= I, .., 4, are given as

-1..100

~ B niX { cos Sy} dU2- 4.l jmje . S
][ 0 j=l -sm sy

V2= ][2100 ±BjenJX{sin SY}ds; Os-xs-h (22)
o .7=1 COS sy

where Bj(s), j = 1,..,4, are the arbitrary

unknowns, n, (s), j = 1,..,4, are the roots of the

characteristic equation:
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(37)

kj(x, t) =J.l1l '" Aj(s, x, t) e-slt+X)ds; j=l, 2 (42)

fl(X) 1l'(~+X) P(X),f2(X) 1l'(~+X) q(x) (43)
J.ll J.ll

Because the two integral equations are not
coupled. they are to be solved separately. In the
crack problem under consideration, with the
dominant Cauchy kernel in Eq. (41) solely
contributing to the singular nature of the

implying that the corresponding kernels in Eqs.
(35) and (36) are bounded for all values of x and
t in the closed domain [a b]. On the other hand,
for the crack tip intersecting the interface with the
interlayer as a=O, it can be shown that the
kernels contain the logarithmic singularities as x
and t approach zero simultaneously. Such
unbounded terms are, however, square-integrable
that do not affect the singular nature of the
solution and can thus be treated as part of the
regular kernels in the presence of the Cauchy
singularity l/(t-x) (Erdogan et al., 1991a).
Accordingly, the near-tip stress field would be yet
governed by the usual square-root singularity,
provided the elastic properties are simply contin­
uous and at least piecewise differentiable near and
at the crack tip (Schovanec and Walton, 1988;
Martin, 1992; Jin and Noda, 1994). These notable
features are in contrast to the dependence of the
order of the stress singularity on the elastic
constants of the constituents when the crack tip
terminates at the interface in piecewise
homogeneous bonded media (Romeo and
Ballarini, 1995).

As a consequence, with the imposition of the
crack surface conditions in Eqs. (14) and (18),
the singular integral equation for each of
individual loading modes can be derived as

t" rPtj(t) dt+ t" kj(x, t) rPj(t) dtl: -x Ja
=fj(x) ; a::S;:x::S;:b, j=l, 2 (41)

where kj(x, t), j= 1,2, are the regular Fredholm
kernels and fj(x), j=l, 2, are the forcing terms
written as

components, O"lYJI and O"lXY, are obtainable by
substituting Eqs. (l9) and (20) into Eqs. (3) and
(4). Thereafter, upon using A j , j=3, 4, as given
above and ~, j = 1, 2 (see Appendix), followed
by some algebraic manipulations, the traction
components acting along the cracked plane, y=O,

can be written as

iT(l+x). ()
2 lim O"lYJI x, y

J1.l y-+O

= - i l b

rPl (t) dt1: sgn (s) e i8(t-X) ds

+2/i1l b
rPl (t) dt100

ih (s,x,t) e-S(t+X)ds

; O::S;:X<OO (35)

iT(1+x) . )
, lim O"lXY(X, y
-/il Y-+O

= - ilb

rP2 (t) dt1: sgn (s) e i8(t-X) ds

+2/i1l b

rP2(t) dt100

ih(s,x,t) e-S(t+X)ds

; O::S;:x < 00 (36)

where the improper integrals in the first terms on
the right-hand side can be evaluated by
employing the Fourier representation of a
generalized function (Friedman, 1969)

100 • 2isgnfs) eiS(t-X)ds=-­
-00 t-x

and the integrands ilj(s,x,t) , j=I,2, are
expressed as .

il1(s, x, t) =~ (t- l;X )Mu(s, x)

+1..( l+x -t)M12(S x)
x 2s '

+2stM13(S, x) +2(1-st) M14(S, x) (38)

ih(s, x, t) = ~ (t+ 1~x )M21(S, x)

+ ~ ( I;X +t )M22(S, x)

+2(1 +st) M23(S, x) +2stM24(S, x) (39)

in which the functions Mlm(S, x), 1=1, 2, m=
1,.., 4, are also given in the Appendix.

It is noted that for the crack tip away from the
nominal interface with the graded inter layer, i. e.,
a>O, the integrands in Eqs. (38) and (39) pos­
sess the asymptotic behavior for large values of s
such that

limiL(s, x, t) e-S(t+X)=O
S-oo

; a::S;: (x, t) ::S;:b, j=l, 2 (40)
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(44)

functions rPj, j = 1,2, for a=O as well as a >0, the
square-root crack-tip behavior can be well

retained in the form as (Muskhelishvili, 1953)

[{j(t). ._
,j(t-al (b-t) ,a<t<b, )-1,2

where IIi (t), j = 1,2, are the new unknown

functions bounded and nonzero at t=a and t=

b, and in the normalized interval

the solutions to the integral equations can there­

fore be expanded into the series of the orthogonal

functions which in this case correspond to the

Chebyshev polynomials of the first kind Tn as

I ~

rPj(t) =rPj(7J) ./1-712 ~o CjnTn(7J)

;17J1<I,j=I,2 (46)

in which Cjn, j= 1,2, n~O, are the unknown

coefficients to be evaluated and the compatibility

condition in Eq. (32) can be satisfied by using the

orthogonality of Tn when c})=O, j = I, 2.
Upon substituting Eqs. (44) - (46) into Eq.

(41), truncating the series at n=N, and using the

relevant integral formula (Abramowitz and

Stegun, 1972), the integral equations are rewritten

as

where U« is the Chebyshev polynomial of the
second kind. To solve the above functional

equations, the zeros of TN (I;) which are

concentrated near the end singular points ~= ± I

are chosen as a set of collocation points:

TN(~k) =0, ~k=COS [; (2k; 1) ]

; k=l, 2,.., N (48)

and the integral equation for each loading mode

can be then reduced to a system of linear

algebraic equations for en, j=l, 2, l~n~N, by

evaluating Eq. (47) at N station points ~k. As

noted, the number of series terms N which is

equal to that of collocation points must be suffi­
ciently large for the solution to converge to a

required degree of accuracy.

With the coefficients c»: j=I,2, l~n~N, de­
termined, the integral equations in Eq. (41) pro­

vide the dominant terms of singular tractions

. ahead of the crack tips IeI> I as

{aIYY ( ~' O)} 4f.l1 f {Cln}
aIXY(~, 0) =- I +X n:1 C2n

[~-sgn (~);p=T] n +0 (0 ; I~ I>1 (49)
sgn(~)./~2-1

where 0 ( .) denotes the nonsingular terms

involving the Fredholm kernels. Subsequently, as

the physical quantities of primary importance in

characterizing the local crack-tip behavior in

elastic fracture mechanics, the stress intensity fac­

tors are defined that can be evaluated in terms of
the solutions to the integral equations such that

{
K I (a)} . {O"!YY(X, O)}
K. (a) =~~ ../2 (a-x) O"!xy(x, 0) ;x<a

=~jb-a f (_on{Cln} (50)
I +x 2 n:! C2n

{K d b) } = l im ./2(x-bl {O"!YY(x, a)} ;x>b
KI (b) x-eb O"IXY(X, 0)

-_~j b-a f {Cln} (51)
- I+x 2 n-! C2n

where KI and KI are the uncoupled mode I and

mode ][ stress intensity factors, respectively. To

be mentioned now is that due to the continuity of

the elastic properties through the graded

interlayer, the singular stress components as given

in Eqs. (49) are also continuous at the location of

the nominal interface with the interlayer, which
renders the foregoing definition of the stress in­

tensity factors equally applicable even for the

limiting case of a=O as well.

4. Results and Discussion

As numerical illustrations, the stress intensity

factors are presented for various combinations of

geometric (d/ C, h/2c) and material (E3/ E I )

parameters of the bonded half-planes with a

graded interlayer, in order to cover a wide range

of possibilities that may arise in practice

depending upon particular applications. Without

loss in generality, the uniform normal and shear
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h/2e=0.5

die

Fig. 3 Variations of mode n stress intensity factors

K. / roc lJ2 with crack location d/ c for differ­

ent elastic moduli ratios £3/£1 (h/2c=O.5).

4

h/2e=0.5

32

... 'EJl
EI=O.'l.""j

0.5
1.0

. 2.0. 10."

0.9

die

Fig.2 Variations of mode I stress intensity factors

KI /ooc1l2 with crack location d/ c for differ­

ent elastic moduli ratios £3/£1 (h/2c=O.5)

homogeneous plane. Under the identical geomet­

ric condition, a careful examination of the curves

for KI and K. reveals that although not so

pronounced, K. is less sensitive to the variations

of £3/£1 than KI is.

To examine the effect of the graded interlayer,

the mode I and mode n stress intensity factors

for different values of h/2c are plotted versus d/
c in Figs. 4 and 5, respectively. Two material

combinations, £3/£1 =0.1 and £3/£1 = 10, are

considered. Of importance in these figures is that

an increase in h/2c leads to a substantial reduc-

crack surface tractions are considered to be ap­

plied as p(x) =-0"0, q(x) =0 and p(x) =0, q

(x)=-roinEgs. (14) and (18). The plane strain

condition is assumed with the Poisson's ratio 1/=

0.3, unless otherwise stated and the resulting

values of the mode I and mode n stress intensity

factors are presented in normalized form as KI/
O"OC

1/2 and KriroclI2
, respectively. In the course of

generating the numerical results, no more than
thirty-term expansion in Eq, (46) is found to be

necessary in obtaining three-digit accuracy be­

yond the decimal point for the material and geo­

metric configurations examined in this study, to­
gether with the related integrals in Eqs, (42) and

(47) evaluated by using the Gauss-Legendre and

Gauss-Chebyshev quadratures, respectively

(Davis and Rabinowitz, 1984).

Figures 2 and 3 show the variations of mode I
and mode n stress intensity factors, respectively,

as a function of crack location d/ c for different

values of the elastic moduli ratio £3/£1 and the
fixed interlayer thickness, h/2c=0.5. A common

feature to be observed from these two figures is

that both the values of Ki and Kg decrease with

increasing £3/£1 which can be accounted for by

the overall stiffness augmentation in the bonded

system, indicating the enhanced fracture resist­
ance for the crack in a compliant constituent by

the nearby stiff constituent. An additional generic
trend is that both the stress intensity factors also

tend to decrease with decreasing d / c for £3/£1 >
1.0, implying the more constraints exerted by the
stiff constituent when the crack approaches the

interlayer, while the reverse behavior prevails for

£3/£1<1.0.
It is further noted that for the crack in a stiffer

constituent, the stress intensity factors at the crack

tip a are of greater magnitude than those at the

crack tip b, and the opposite is true for the case

of a crack in the less stiff constituent. As expected,

the crack tip closer to the interface is shown to be

more markedly affected by the values of £d£1.

When the crack is being located farther away

from the interface, however, the normalized stress

intensity factors at both the crack tips approach

unity, i. e., those of a crack in an infinite
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Fig. 5 Variations of mode H stress intensity factors
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Fig. 4 Variations of mode I stress intensity factors

KI /O"OC!/2 (a) at the crack-tip a; (b) at the

crack-tip b with crack location d/ c for dif­
ferent interlayer thicknesses h/2c (E3/ E 1=0.1
and E3/ E 1= 1O) .

tion in the magnitude of both modes of stress

intensity factors when the crack is in the stiffer

constituent and the opposite response is seen to

exist for the reversed material combination, which

is quite similar to increasing the value of d/ c.
Such a trend with h/2c, including the limiting

case of h/2c=O.O, signifies that for the crack in

the stiff constituent, the presence of a graded

interlayer with the greater thickness provides

more constraints which are effective in shielding

the crack, offsetting the influence from the

adjacent compliant constituent.

To be noticed herein is that for h/2c=0.0, the

case of a bimaterial system without the interlayer,

the corresponding results for the crack tip a are

plotted for d/ c~ 1.05. This is due to the fact that

the discrete nature of the elastic moduli for zero

interlayer thickness yields the order of singularity

at the crack tip a other than the square-root type

when the crack intersects the bimaterial interface

(Romeo and Ballarini, 1995). Hence, the values

of stress intensity factors at the crack tip a for the

current trimaterial and conventional bimaterial

systems are not compatible when d/ c= 1.0. Oth­

erwise, a continuous transition of both the mode

I and mode ]I stress intensity factors is retained

for the given values of h/2c. If the thickness ratio

h/2c were increased even further, the dilution of
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The plane elasticity solutions have been pro-

Fig. 7

where another similar empirical relationships for:
other values of h/2c and d/ c can be also readily
developed.

degree of nonhomogeneity within the interlayer
would lead to the solutions that also tend to those
for the homogeneous counterpart. Another fea­
ture to be closely observed from Figs. 4 and 5 is
that the behavior of the mode I crack appears to
be more sensitive to changes in the interlayer
thickness when compared with that of the mode
n crack, especially for the crack in the stitTer

constituent.
Additional results are presented in Figs. 6 and

7 in order to give some ideas about the etTect of
variations in the Poisson's ratio 1/ on the modes
I and n stress intensity factors, respectively.

Specifically, the values of the stress intensity fac­
tors are plotted in the logarithmic scale with the
variable E3/ E I for ditTerent values of 1/ and the
fixed crack size and location as h/2c=0.5 and d/
c= 1.0. Although seemingly insignificant, the
etTect of 1/ is observed to become more notable
when the crack is in the stitTer constituent. The
ditTerence in the magnitude of stress intensity
factors for the given range of the Poisson's ratio,
0.01::5:1/::5:0.49, is estimated to be as high as 2.1
percent for the mode I crack and 4.3 percent for
the mode n crack when E3/E I =0.1. It is
practically likely, however, that the values of 1/
vary within a much narrower range than the
above so that the etTectof the Poisson's ratio may
be negligible. Therefore, analogous to the previ­
ous findings for the case of a single crack (Konda
and Erdogan, 1994) and that of a periodic array
of parallel cracks (Choi, 1997) in the graded
nonhomogeneous plane, the assumption of
neglecting the possible spatial variation of the
Poisson's ratio in the analysis of bonded media
with the graded interfacial zone is too justifiable.

Of interest in Figs. 6 and 7 is that both the
mode I and mode nstress intensity factors vary
approximately linearly in the logarithmic scale
with the elastic moduli ratio E~E1 under the
given crack surface tractions. Because the effect of
the Poisson's ratio is negligibly small, it is then
possible"to develop simple empirical formulas for
the stress intensity factors . For 1/=0.3 from Figs.
6 and 7, based on a power relationship, the
following approximate formulas can be used to
evaluate both modes of the stress intensity factors
for h/2c=0.5 and d / c= 1.0:
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vided for the problem of a crack perpendicular to

the graded interfacial zone in bonded materials

under both the mode I and mode II loading

conditions. With the interfacial zone treated as a

nonhomogeneous interlayer between the

dissimilar homogeneous half-planes, a singular

integral equation was derived for each mode of

the crack-tip behavior. The main emphasis was

placed upon the evaluation of stress intensity

factors from the standard disciplines of linear
elastic fracture mechanics. The mode I and mode

II crack-tip behaviors were then described in

terms of the corresponding values of stress inten­
sity factors that were shown to be strongly

affected by the relative crack size and location for

different combinations of elastic moduli of

bonded media involving the material

nonhomogeneity within the interlayer. The effect

of such a graded interlayer was also addressed in

conjunction with the results for the case of

bimaterial interface of zero thickness in piecewise

homogeneous bonded materials.

It was further illustrated that the presence of the
graded interlayer plays the role of shielding or

amplifying the near-tip field, depending on the

material combination of the bonded trimaterial

system. To be specific, for the crack in the stiffer

side of the bonded media, the graded interlayer

with the greater thickness would be preferable
attenuating the amplifying effect. On the other

hand, for the case of a crack residing in the less

stiff side, the interlayer with the smaller thickness
would be more effective in curbing the crack-tip

behavior.

It should be also noted that although the mode
I and mode II crack responded to the variations

of material and geometric parameters in a com­

parable way, the values of the mode I stress

intensity factor were observed to be more sensitive

to the changes in such parameters than those of

the mode II stress intensity factor. Moreover, the

insignificant effect of the Poisson's ratio led to

some approximate formulas that can readily be

used to evaluate the stress intensity factors as a
function of the elastic moduli ratio of the bonded

dissimilar half-planes with the graded interlayer.
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Appendix
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gi3(S) = l b
(l +st) e-St¢z(t) dt (A9)

&i!4(S) = lbste-st¢z(t)dt (AID)

When Eqs. (AI) and (A2) are substituted into

the expressions for the traction components CfIY"

and CfIXY defined along the cracked plane, y=D,

the functions Mlm(S, x), 1= I, 2, m= I,.., 4, In

Eqs. (38) and (39) can be written as

Mlm(s, x) =SHlm+( sx- ~ + ~ )HI(m+z)

; m=I, 2 (All)

Mlm(S, x) =SHl(m+zl+( sx r: ; + ~ )HI(m+4l

; m=3, 4 (AI2)

Mzm(s, x) =-sHzm-( sx-++ ~ )Hz(m+zl

;m=1,2 (Al3)

Mzm(s, x) =-sHz(m+zl-( sx-++ ~ )HZ(m+4l

; m=3, 4 (A14)




